Jewelry Online E-Commerce Project
http://www.alphacom-corp.com
(AlphaCom Corporation

6. CREATE STORED PROCEDURES

1. Introduction

Writing stored procedures is the one of the most important tasks an Oracle Developer will do. A major part of database programming is to query database according to a wide range of criteria. These queries can be coded with SQL statements or PL/SQL blocks, or JAVA, the latest and the most promising. The code can either be saved in a database application, or in the database itself. The latter is called a STORED PROCEDURE. When we put the queries in the database itself, it can achieve following benefits:

1. Performance

2. Productivity and Ease of Use
3. Scalability
4. Maintainability

5. Interoperability

6. Security

7. Replication
There are new JAVA based Stored Procedure capabilities in the new Oracle 8i, and we firmly believe this is the feature. They are shown as Appendix 3. We will revisit this part later in this project after we finish the JDBC portion. After that, you will see this code is very logical and easy to understand).

Oracle’s Stored Procedure architecture is following:

[image: image1.png]
Oracle Stored Procedure Architecture (Client/Server)

 The related stored procedures can be grouped together to form the so-called PACKAGES. This is very much like in JAVA. The difference between these two is that the procedures in Oracle are not Object-Oriented, so there is no inheritance or Object relationship among the procedures; while in JAVA, those are building blocks. One can be built on others. We can easily see the advantages of using objects compared to using procedures based techniques such as PL/SQL. In the project, we can see the limitation of PL/SQL. Oracle does have some Object-Oriented features added. Later in this session we will use Oracle Objects, which is quite a new feature for Oracle 8.

 In this project, we have many procedures to implement. The following are some examples:

1. Get the information of the most expensive product;

2. Get the information of the top selling product;

3. Procedures used for querying from the database, for instance, querying Customer Orders Details, Sales by Year, Sales By class, Ten Most Expensive Products, Ten Best Selling Products, Ten top customers, and various frequently used searching standards, such as search by sku_no, class, shape etc.

4. Procedures used to do maintenance work, for instance, selecting an available salesperson to assign to a new customer, selecting a substitute salesperson when a salesperson is deleted from the employee list, etc.

5. Other utility procedures/functions, for instance, calculating the number of customers assigned to a salesperson, calculating the total amount of sales achieved by a salesperson, calculating the job title, department name, or location of an employee, etc.

In the project, you will implement some of them. Below, we give two examples:

2. First Simple Procedure

2.1 Sample Procedure:
The Stored Procedure we will do is to list the most expensive product in our product line. Following is the procedure written in PL/SQL.

Program listing:

CREATE OR REPLACE PROCEDURE

 most_expensive_product(p_sku_num

OUT
NUMBER,

 p_short_description
OUT
VARCHAR2,

 p_retail_price

OUT
NUMBER)

IS

BEGIN

 SELECT
SKU_NUM,

SHORT_DESCRIPTION,

RETAIL_PRICE

 INTO
p_sku_num, p_short_description, p_retail_price

 FROM
J_PRODUCT

 WHERE
RETAIL_PRICE = (SELECT MAX(RETAIL_PRICE) FROM

J_PRODUCT);

END;

Type it directly at SQL*PLUS or save it in a file and run it.

After creating the procedure, you can use following command to view the procedure at SQL*Plus prompt:

SQL> select Text from USER_SOURCE

Where Name= ‘most_expensive_product’

And Type = ‘procedure’

 Order by line;

2.2. Test the new Stored Procedure

Type in following test program at SQL*Plus.

set verify off

set serveroutput on

DECLARE

 v_sku_num

 NUMBER(10);

 v_short_description
 VARCHAR2(200);

 v_retail_price
 NUMBER(11,2);

BEGIN

 most_expensive_product(v_sku_num, v_short_description, v_retail_price);

 dbms_output.put_line(' SKU NUMBER: '||TO_CHAR(v_sku_num));

 dbms_output.put_line(' Description: '||v_short_description);

 dbms_output.put_line('Retail Price: '||TO_CHAR(v_retail_price));

END;

2.3 Drop the Stored Procedure

Just type in the following command at SQL*Plus command prompt:
SQL> drop procedure most_expensive_product

3. A much more complex procedure

Following we will create a procedure to display order details for a given customer.

3.1 Create new Objects (data types) to be used as parameter types.

The parameter in the procedure will pass the query results to the calling environment. To do this you need an ORACLE version with OBJECTS OPTION. Both Personal Oracle 8 and Oracle 8 Enterprise edition support OBJECT OPTION.

CREATE TYPE item_ty AS OBJECT(

 ORDER_ID NUMBER(10),

 ITEM_ID NUMBER(10),

 SKU_NUM NUMBER(10),

 UNIT_PRICE NUMBER(9,2),

 QUANTITY NUMBER(8),

 ITEMTOT NUMBER(8,2)

);

/

CREATE TYPE item_list_ty AS TABLE OF item_ty;

/

To verify that the objects are created, you can use the ‘select’ in SQL*PLUS by using Oracle Data Dictionary capabilities:

SQL> select * from obj;

Or you can use Enterprise Manager as shown following:

[image: image2.png]
Figure 1. Schema Manager shown objects

In Enterprise Manager, you can directly make change over there. Actually, you can also create new objects in it.

3.2 Create the procedure that selects the item details for all orders ordered by a given customer.

The procedure has an IN parameter to pass in the customer ID and an OUT parameter with the nested table type item_list_ty to pass out the query results.

CREATE OR REPLACE PROCEDURE order_detail

 (v_id
 IN
 NUMBER,

 v_item_list OUT item_list_ty)

IS

 CURSOR items_cr IS

 SELECT j_item.order_id order_id, item_id, sku_num, unit_price,

 quantity, itemtot

 FROM j_order, j_item

 WHERE j_order.order_id = j_item.order_id

 AND customer_id = v_id;

 v_item_num BINARY_INTEGER;

BEGIN

 v_item_list := item_list_ty(); /* Initialize with the

 constructor item_list_ty()*/

 v_item_num := 1;

 FOR item_rec IN items_cr LOOP

 v_item_list.EXTEND(1); /* Extend the size of the nested

 table. */

 v_item_list(v_item_num) := item_rec;

 v_item_num := v_item_num +1;

 END LOOP;

END;

/

3.3. Verify Procedures:

To verify the source the procedures, type in following in SQL*PLUS:

SQL> select Text from USER_SOURCE

Where Name= ‘order_detail’

And Type = ‘procedure’

 Order by line;

Or simply just:
 SQL> select Text from USER_SOURCE

to see all.

The other option is to use Enterprise Manager. Actually, in this case, GUI base Enterprise Manager go further than just GUI, you can edit the code and compile directly over there.

[image: image3.png]
We would like to use some development tools to write and debug PL/SQL easily. The Oracle Procedure Builder from Developer 2000 Suite is one of obvious choice. Unfortunately, it is much outdated. The program we wrote above cannot be compiled there. Maybe later we can straight to JAVA based Stored Procedures, which is the real what Oracle is trying to push.

3.4 Create a SQL*PLUS program to test the procedure.

The script contains a PL/SQL block. It declares a nested table variable v_item_list, calls the procedure order_detail() with the variable as the OUT parameter, and then uses the utility function dbms_output.put_line() to display the content of the nested table returned from the procedure, that is, the item details of the orders, to the SQL*PLUS screen. In a different calling environment, for instance, in a JAVA environment using JDBC, you will use a different way to pass the OUT parameter between the ORACLE procedure and the calling environment.

SET VERIFY OFF

SET ECHO OFF

SET SERVEROUT ON

ACCEPT sv_customer_id PROMPT 'Please enter a customer ID: '

DECLARE

 v_item_list item_list_ty;

 v_item item_ty;

 v_index BINARY_INTEGER := 1;

 v_cust_id NUMBER(7) := &sv_customer_id;

 PROCEDURE print_items (v_item IN item_ty)

 IS

 BEGIN

 dbms_output.put_line(

 RPAD(TO_CHAR(v_item.order_id), 12)||

 RPAD(TO_CHAR(v_item.item_id), 12)||

 RPAD(TO_CHAR(v_item.sku_num), 12)||

 RPAD(TO_CHAR(v_item.unit_price), 12)||

 RPAD(TO_CHAR(v_item.quantity), 12)||

 RPAD(TO_CHAR(v_item.itemtot), 12)

);

 END;

BEGIN

 Dbms_output.put_line(‘======== Customer order detail report =======’);
 dbms_output.put_line(

'Order ID Item ID SKU Number Unit Price Quantity Item Total ');

 order_detail(v_cust_id, v_item_list);

 WHILE v_item_list.EXISTS(v_index) LOOP

 print_items(v_item_list(v_index));

 v_index := v_index+1;

 END LOOP;

END;

/

SET VERIFY ON

SET ECHO ON
When you run this program in SQL*PLUS, the printout will be like the following:

Please enter a customer ID: 10004

======== Customer order detail report =======

Order ID Item ID SKU Number Unit Price Quantity Item Total

612 1 860 30 100 300

612 2 861 40.5 20 810

612 3 863 10 150 1500

619 3 130 3.4 100 340

619 1 380 4 100 400

619 2 376 2.4 100 240

607 1 871 5.6 1 5.6

608 1 1860 24 1 24

608 2 871 5.6 2 11.2

612 4 871 5.5 100 550

619 4 871 5.6 50 280

563 1 352 58.3 10 583

Assignment:

1. Write a stored procedure and a testing program to list the top selling items. Print out the simple data.

2. Write the procedure to do “Sales by Year”. Print out the simple report like the above simple report;

3. Write the Stored Procedure to do “Ten Most Sold Products” in a certain year based on the user input.

Advantage of Stored Procedure

1. Performance

Stored procedures are compiled once and stored in executable form, so procedure

calls are quick and efficient. Executable code is automatically cached and shared

among users. This lowers memory requirements and invocation overhead.

By grouping SQL statements, a stored procedure allows them to be executed with a

single call. This minimizes the use of slow networks, reduces network traffic, and

improves round-trip response time. OLTP applications, in particular, benefit

because result set processing eliminates network bottlenecks.

Additionally, stored procedures enable you to take advantage of the computing

resources of the server. For example, you can move computation-bound procedures

from client to server, where they will execute faster. Likewise, stored functions

called from SQL statements enhance performance by executing application logic

within the server.

2. Productivity and Ease of Use

By designing applications around a common set of stored procedures, you can

avoid redundant coding and increase your productivity. Moreover, stored

procedures let you extend the functionality of the RDBMS. For example, stored

functions called from SQL statements enhance the power of SQL.

You can use the Java integrated development environment (IDE) of your choice to

create stored procedures. Then, you can deploy them on any tier of the network

architecture. Moreover, they can be called by standard Java interfaces such as JDBC,

CORBA, and EJB and by programmatic interfaces and development tools such as

SQLJ, the OCI, Pro*C/C++, and JDeveloper. This broad access to stored procedures lets you share business logic across applications. For example, a stored procedure that implements a business rule can be called from various client-side applications, all of which can share that business rule. In addition, you can leverage the server’s Java facilities while continuing to write applications for your favorite programmatic interface..Advantages of Stored Procedures

3. Scalability

Stored procedures increase scalability by isolating application processing on the

server. In addition, automatic dependency tracking for stored procedures aids the

development of scalable applications.

The shared memory facilities of the Multi-Threaded Server (MTS) enable Oracle8i to

support more than 10,000 concurrent users on a single node. For more scalability,

you can use the Net8 Connection Manager to multiplex Net8 connections.

4. Maintainability

Once it is validated, a stored procedure can be used with confidence in any number of applications. If its definition changes, only the procedure is affected, not the

applications that call it. This simplifies maintenance and enhancement. Also,

maintaining a procedure on the server is easier than maintaining copies on various

client machines.

5. Interoperability

Within the RDBMS, Java conforms fully to the Java Language Specification and

furnishes all the advantages of a general-purpose, object-oriented programming

language. Also, like PL/SQL, Java provides full access to Oracle data, so any

procedure written in PL/SQL can be written in Java.

PL/SQL stored procedures complement Java stored procedures. Typically, SQL

programmers who want procedural extensions favor PL/SQL, and Java

programmers who want easy access to Oracle data favor Java.

The RDBMS allows a high degree of interoperability between Java and PL/SQL.

Java applications can call PL/SQL stored procedures using an embedded JDBC

driver. Conversely, PL/SQL applications can call Java stored procedures directly.

6. Security

You can restrict access to Oracle data by allowing users to manipulate the data only through stored procedures that execute with their definer’s privileges. For example,

you can allow access to a procedure that updates a database table, but deny access

to the table itself..Advantages of Stored Procedures

7. Replication

With Oracle Advanced Replication, stored procedures can be replicated (copied)

from one Oracle8i database to another. This feature makes them ideal for

implementing a central set of business rules. Once written, the stored procedures

are replicated and distributed to work groups and branch offices throughout the

company. In this way, policies can be revised on a central server rather than on

individual servers.

Appendix 2. Why Use Object Types?

Object types reduce complexity by breaking down a large system into logical entities. This allows you to create software components that are modular, maintainable, and reusable. It also allows different teams of programmers to develop software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance code out of SQL scripts and PL/SQL blocks into methods. Object types minimize side effects by allowing access to data only through approved operations. Also, object types hide implementation details, so that you can change the details without affecting client programs.

Object types allow for realistic data modeling. Complex real-world entities and relationships map directly into object types. Moreover, object types map directly into classes defined in object-oriented languages such as C++. Now your programs can better reflect the world they are trying to simulate.

Structure of an Object Type

Like a package, an object type has two parts: a specification and a body. The specification is the interface to your applications; it declares a data structure (set of attributes) along with the operations (methods) needed to manipulate the data. The body fully defines the methods, and so implements the specification.

All the information a client program needs to use the methods is in the specification. Think of the specification as an operational interface and of the body as a black box. You can debug, enhance, or replace the body without changing the specification-and without affecting client programs.

In an object type specification, all attributes must be declared before any methods. Only subprograms have an underlying implementation. So, if an object type specification declares only attributes, the object type body is unnecessary. You cannot declare attributes in the body.

All declarations in the object type specification are public (visible outside the object type). However, the object type body can contain private declarations, which define methods necessary for the internal workings of the object type. The scope of private declarations is local to the object type body.

To understand the structure better, study the example below, in which an object type for complex numbers is defined. For now, it is enough to know that a complex number has two parts, a real part and an imaginary part, and that several arithmetic operations are defined for complex numbers.

CREATE TYPE Complex AS OBJECT (

 rpart REAL,

 ipart REAL,

 MEMBER FUNCTION plus (x Complex) RETURN Complex,

 MEMBER FUNCTION less (x Complex) RETURN Complex,

 MEMBER FUNCTION times (x Complex) RETURN Complex,

 MEMBER FUNCTION divby (x Complex) RETURN Complex

);

CREATE TYPE BODY Complex AS

 MEMBER FUNCTION plus (x Complex) RETURN Complex IS

 BEGIN

 RETURN Complex(rpart + x.rpart, ipart + x.ipart);

 END plus;

 MEMBER FUNCTION less (x Complex) RETURN Complex IS

 BEGIN

 RETURN Complex(rpart - x.rpart, ipart - x.ipart);

 END less;

 MEMBER FUNCTION times (x Complex) RETURN Complex IS

 BEGIN

 RETURN Complex(rpart * x.rpart - ipart * x.ipart,

 rpart * x.ipart + ipart * x.rpart);

 END times;

 MEMBER FUNCTION divby (x Complex) RETURN Complex IS

 z REAL := x.rpart**2 + x.ipart**2;

 BEGIN

 RETURN Complex((rpart * x.rpart + ipart * x.ipart) / z,

 (ipart * x.rpart - rpart * x.ipart) / z);

 END divby;

END;

Appendix 3. JAVA Stored Procedure supported by Oracle 8i

import java.sql.*;

import java.io.*;

import oracle.jdbc.driver.*;

public class POManager {

public static void addCustomer (int custNo, String custName,

String street, String city, String state, String zipCode,

String phoneNo) throws SQLException {

String sql = "INSERT INTO Customers VALUES (?,?,?,?,?,?,?)";

try {

Connection conn = new OracleDriver().defaultConnection();

PreparedStatement pstmt = conn.prepareStatement(sql);

pstmt.setInt(1, custNo);

pstmt.setString(2, custName);

pstmt.setString(3, street);

pstmt.setString(4, city);

pstmt.setString(5, state);

pstmt.setString(6, zipCode);

pstmt.setString(7, phoneNo);

pstmt.executeUpdate();

pstmt.close();

} catch (SQLException e) {System.err.println(e.getMessage());}

}

public static void addStockItem (int stockNo, String description,

float price) throws SQLException {

String sql = "INSERT INTO StockItems VALUES (?,?,?)";

try {

Connection conn = new OracleDriver().defaultConnection();

PreparedStatement pstmt = conn.prepareStatement(sql);

pstmt.setInt(1, stockNo);

pstmt.setString(2, description);

pstmt.setFloat(3, price);

pstmt.executeUpdate();

pstmt.close();

} catch (SQLException e) {System.err.println(e.getMessage());}

}.

Loading the Java Stored Procedures

Next, you use the command-line utility loadjava to upload your Java stored

procedures into the Oracle RDBMS, as follows:

> loadjava -u scott/tiger@myPC:1521:orcl -v -r -t POManager.java

initialization complete

loading : POManager

creating : POManager

resolver : resolver (("*" scott) ("*" public) ("*" -))

resolving: POManager

Recall that option -v enables verbose mode, that option -r compiles uploaded Java

source files and resolves external references in the classes, and that option -t tells

loadjava to connect to the database using the thin JDBC driver.

alphacom
Page 1
11/9/99

