Jewelry Online E-Commerce Project
http://www.alphacom-corp.com
(AlphaCom Corporation

7. CREATE TRIGGERS

1. Introduction to Database Triggers

Triggers define actions the database should take when some database-related event occurs. They can be used to supplement declarative referential integrity, to enforce complex business rules, or to audit changes to data. The typical triggers are of the following three types: INSERT, UPDATE, and DELETE. Also, there are BEFORE and AFTER triggers, ROW and STATEMENT triggers. There are two keywords in triggers, NEW and OLD. OLD means the old table contents, and NEW means the new table contents. For instance, suppose we want to audit the change whenever a table is changed (inserted, updated or deleted), we can to copy the data from the old table, referenced as OLD.col_name, to a table where we want to keep it and audit it later, which is the NEW table.

In this project, we will implement some triggers. The following are some examples:

1. When a new customer record is created, we need to assign a default salesperson to it. This salesperson is based on their territory matched the customer’s address. For example, we have salesperson responsible for “NORTHEASTERN” region, so every customer from “New Jersey” will be automatically assigned to those sales people who handle “NORTHEASTERN” region.

2. When a salesperson is deleted, all the customers that he/she serves will be replaced by another salesperson in the same region (or no salesperson will be assigned to those customers if there is no available sales person.)

3. Audit data changes: when an employee’s salary is decreased or increased by more than 10%, save the old salary to an audit table.

4. Enforce data integrity with business logic: after performing update, insert, or delete on the table J_ITEM, revise the column SHIPPING_TOTAL in the table J_ORDER accordingly, so that its value remains to be the sum of all item totals for the order.

2. The first simple trigger program

First, we will write a very simple trigger to demonstrate what procedure to create a database trigger. This trigger stores the row into a backup table whenever a row is deleted from j_customer table.

Create the backup table customer_back: at SQL prompt, type

SQL> @c:\project\day3\createcustomer_back;

Program listing:

drop table customer_back;

/

create table customer_back

(CUSTOMER_ID NUMBER(10) NOT NULL,

 LAST_NAME VARCHAR2(15) NOT NULL,

 FIRST_NAME VARCHAR2(15),

ADDRESS VARCHAR2(40),

CITY VARCHAR2(30),

STATE VARCHAR2(2),

ZIP_CODE VARCHAR2(10),

AREA_CODE NUMBER(3),

PHONE_NUMBER VARCHAR2(16),

SALESPERSON_ID NUMBER(4),

CREDIT_LIMIT NUMBER(9,2),

PAYMENT_METHOD_ID NUMBER(2),

CREDIT_CARD_TYPE VARCHAR2(15),

CREDIT_CARD_NUM VARCHAR2(16),

CREDIT_CARD_EXP_DATE DATE,

PASSWD VARCHAR2(10),

EMAIL VARCHAR2(30)

);

/

To Create the trigger, type in following program:

CREATE OR REPLACE TRIGGER customer_delete_trigger

BEFORE DELETE ON j_customer

FOR EACH ROW

BEGIN

INSERT INTO customer_back

values (:old.customer_id, :old.last_name, :old.first_name,

:old.address, :old.city, :old.state, :old.zip_code,

:old.area_code, :old.phone_number, :old.salesperson_id,

:old.credit_limit, :old.payment_method_id,

:old.credit_card_type, :old.credit_card_num,

:old.credit_card_exp_date, :old.passwd, :old.email);

end;

/

After we set up the trigger program, we are ready to test it. So insert a temporary value into the table j_customer a new value: (preparing for deleting)

SQL> insert into j_customer

 values (1000,'gates','bill','aaa', 'woodbridge', 'NJ', '00890',111, '1234-567', 123, 5000,10, 'visa', '1234567', To_date('SEP-23-99', 'MON-DD-YY'), 'bill', 'bill@eln.com');

So, we can delete the record just to see how it goes:

SQL> delete from j_customer where customer_id=1000;

See if the trigger works:

SQL> select from customer_back;

You will see the record deleted from the original table.

3. The real trigger program

Next, we will implement the trigger in the item 2. There is one obstacle for using a trigger to perform the required maintenance work: a row trigger cannot retrieve data from the table that the trigger belongs to. (The table in such a case is called a mutating table.) As a result, when deleting a row of a salesperson from the J_EMPLOYEE table, one cannot query the same table to select a substitute salesperson. Fortunately, we can query the table in the statement triggers belonging to the table. In the following implementation, we create a table J_SALESPERSONS to hold salespersons temporarily. When a DELETE statement on J_EMPLOYEE is to be executed, a BEFORE DELETE statement trigger will first copy data from J_EMPLOYEE to J_SALESPERSONS. Then, if the deleted employee is a salesperson, a BEFORE DELETE row trigger will select a substitute salesperson and assign him/her to all the customers assigned to the to-be-deleted salesperson. (You can improve the trigger so that the customers will be distributed among other salespersons.) Finally, an AFTER DELETE statement trigger will delete all data from the temporary table J_SALESPERSONS.

1.1 Create table J_SALESPERSONS

CREATE TABLE J_SALESPERSONS

AS

SELECT emp_id, job_id, dept_id

FROM J_EMPLOYEE;

DELETE FROM J_SALESPERSONS;

COMMIT;
1.2 Create preliminary functions

/* Returning the name of the department of an employee */

CREATE OR REPLACE FUNCTION dept_name_of (p_emp_id IN NUMBER)

RETURN VARCHAR2

AS

 v_dept_name VARCHAR2(50);

 CURSOR dept_names_cur IS

 SELECT dept_name

 FROM j_department

 WHERE dept_id IN (SELECT dept_id FROM j_salespersons WHERE emp_id = p_emp_id);

BEGIN

 OPEN dept_names_cur;

 FETCH dept_names_cur INTO v_dept_name;

 IF dept_names_cur%NOTFOUND THEN

CLOSE dept_names_cur;

 RETURN NULL;

 ELSE

 CLOSE dept_names_cur;

 RETURN v_dept_name;

 END IF;

END;

/

/* Returning the location id of an employee’s department */

CREATE OR REPLACE FUNCTION location_id_of (p_emp_id IN NUMBER)

RETURN NUMBER

AS

 v_location_id NUMBER(3);

 CURSOR location_ids_cur IS

 SELECT location_id

 FROM j_department

 WHERE dept_id IN (SELECT dept_id FROM j_salespersons WHERE emp_id = p_emp_id);

BEGIN

 OPEN location_ids_cur;

 FETCH location_ids_cur INTO v_location_id;

 IF location_ids_cur%NOTFOUND THEN

CLOSE location_ids_cur;

 RETURN NULL;

 ELSE

 CLOSE location_ids_cur;

 RETURN v_location_id;

 END IF;

END;

/

/* Returning the number of customers assigned to a sales person */

CREATE OR REPLACE FUNCTION num_of_customers

(p_emp_id IN NUMBER)

RETURN NUMBER

AS

 v_num NUMBER(7);

BEGIN

 SELECT COUNT(*)

 INTO v_num

 FROM j_customer

 WHERE salesperson_id = p_emp_id;

 RETURN v_num;

END;

/

1.3 Create the function that selects a salesperson to replace the given sales person:

CREATE OR REPLACE FUNCTION select_sp_from_cp

(p_emp_id IN NUMBER)

RETURN NUMBER

AS

 v_emp_id NUMBER(10);

 CURSOR salesperson_cur IS

 SELECT emp_id

 FROM j_salespersons

 WHERE (NOT emp_id = p_emp_id) --must be a different employee

 AND job_id IN (SELECT job_id

 FROM j_job

 WHERE LOWER(function) = 'salesperson')

 --must be a salesperson

 AND dept_id IN

 (SELECT dept_id

 FROM j_department

 WHERE dept_name = dept_name_of(p_emp_id)

 /*The substitute must be in the same type of sales department */

 AND (LOWER(dept_name_of(p_emp_id)) LIKE

 '%internet sales%'

 OR

 location_id = location_id_of(p_emp_id)))

 /*If it’s not the Internet Sales department, the location must be

 the same */

 ORDER BY num_of_customers(emp_id);

BEGIN

 OPEN salesperson_cur;

 FETCH salesperson_cur INTO v_emp_id;

 IF salesperson_cur%NOTFOUND THEN

 CLOSE salesperson_cur;

 RETURN NULL;

 ELSE

 CLOSE salesperson_cur;

 RETURN v_emp_id;

 END IF;

END;

/

1.4 Create the triggers:

/*Runs before executing the delete statement */

CREATE OR REPLACE TRIGGER dup_sp_j_employee

BEFORE DELETE ON j_employee

BEGIN

 INSERT INTO j_salespersons

 SELECT emp_id, job_id, dept_id

 FROM j_employee

 WHERE job_id = 670; -- 670 is the id for salesperson

END;

/

/*Runs after executing the delete statement */

CREATE OR REPLACE TRIGGER clear_sp_j_employee

AFTER DELETE ON j_employee

BEGIN

 DELETE FROM j_salespersons;

END;

/

/*Runs before deleting a row */

CREATE OR REPLACE TRIGGER del_salesp_j_employee

BEFORE DELETE ON j_employee

FOR EACH ROW

WHEN (old.job_id = 670) -- 670 is the id for SALESPERSON

DECLARE

 v_emp_id NUMBER(10);

BEGIN

 v_emp_id := select_sp_from_cp(:old.emp_id);

 UPDATE j_customer

 SET salesperson_id = v_emp_id

 WHERE salesperson_id = :old.emp_id;

END;

/

1.5 Verify the program:
To test the trigger, simply delete a saleperson. Use various “Select” call to verify the final result.

Assignment:
1. Implement the item 1 listed above using Trigger:

When a new customer record is created, we need to assign a default salesperson to it. This salesperson is based on their territory matched the customer’s address. For example, we have salesperson responsible for “NORTHEASTERN” region, so every customer from “New Jersey” will be automatically assigned to those sales people who handle “NORTHEASTERN” region.

2. Audit data changes: when an employee’s salary is decreased or increased by more than 10%, save the old salary to an audit table.

alphacom
Page 5
11/17/99

